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Introduction

A major difficulty associated with aircraft control is that the dynamic
characteristics are highly dependent on variable parameters, such as the
altitude and the Mach number. Recent years have seen considerable effort
towards the design of adaptive control systems, taking the dynamic dependence
on varving flight parameters into account. Yet, the design of simple controllers
and filters, minimizing the necessary airborn computation and data storage
capabilities, on the one hand, and the dependence on accurate air data, on the
other, remains of major interest. Fixed gain controllers and filters are commonly

used as back-up control systems for advanced high performance aircraft.

In this paper a method for designing fixed-gain controllers and estimators

for systems with large parameter variations or uncertainties is described. The
approach is based on minmax criteria defined on Kuilback's information measure {1]
and previously used for solving model simplification problems ([2], [3]). (We

ante here that other minmax design criteria for deterministic systems have been
proposed, e.g. [4}). The design objective is that the maximum possible difference
between the optimal system at the actual operating point (i.e. the optimal adaptive
system) and the selected fixed-gain svstem be minimal, Finite time and regulator
design criteria are defined. The proposed technique is used to design a longitudinal
back-up control system for a given high performance aircraft. Simulated airerafr
responses and a pilot rating chart indicate good performance qualities of the resulting

fixed gain control system for the entire {light regime.
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2. Design Criteria

Al General

In the design problems under consideration we have a stochastic system
M(p,s) depending on a parameter p, whose values may vary over a set P and a
parameter s, whose value is to be selected from a set 8 in the design. Employing
some optimal design criterion, to each parameter value p there corresponds an
optimal value s(p) of s. It is desired, however, to find a single value s°
that will be optimal in some sense for the entire parameter set P, The cost
(or damage) of the resulting design at a given parameter value p is defined as
the distance, in some measure, between M(p,s) and M(p,s(p)). Employing Kullback's
information as a distance measure ([1]-[3]) the maximal cost for a given choice of s

is

fS(P)(Y)

max Es(p)log P
peP P fp(Y)

(p)

where Y is a set of observations/fs (Y) and f;(Y) are the probability densities

of Y corresponding to M(p,s(p)) and M(p,s), respectively and E

S(p) denotes

expectation with respect to M(p,s(p)). The design objective is to minimize the

maximal cost, i.e.

s(p)
, s(p) f M
min max E log .
seS pep P fp (Y)

.
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B. Controller Design for a Linear System in Finite Time

Consider a dynamical svstem in the form

= +
X+ Fn(p,s)xn Bn(p,s)un + Gn(p)wn

(2.1)
v
‘n=H (p)x +v
n n n
where ¥ Is Caussian with mean mo(p) and covariance vo(p)’ u is an external
(e}

(non-feedback) deterministic input, v and Vn are zero-mean Gaussian white noise

sequences with

il

cov (w )
n

Qn(p)

]

cov (v ) R (p)

n n
p is a variable parameter vector taking values in a set P and s is a vector of
controller gains taking values in a set S. Any linear state feedback is accounted

for in the matrix Fn(p,s). We denote the above system by M(p,s).

Employing some optimal control criterion,to each parameter value p there
corresponds an optimal gain value s(p) and the corresponding system M(p,s(p)).
. . . o : : :
It is desired, however, to find a constant gain s that will be optimal in some sense

for the entire parameter set P. As in the case of optimal controller design at a
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given parameter value, the design may be aimed at optimizing the

to some input sequence or tc an initial condition in finite time.

system's response

Let us denote

( N
) (o fS(p)(Y )
IV(p,s) i g5 P 1og S N
' P £ )
P
N
where ¥ = (y,,...,yN). For the Gaussian case under consideration we have
. 1 g ‘En(p,s)‘ -1
I.(pys) = % [log +tr £ (p,s)T_(p,s)-k] (2.2)
N N - - . n n
n=1 )2 (pss(p)):

wihere k is the observations' dimension and

n

il

y
n

in=

{ = !
L Pes) Ep Ly
{p,s(p)) = ES(P)'
P

T,
n_](p,s)][yn-yn{n_l(p,s)l }

. - T
[yn—ynin_l(p,s(p))][yn—ynln_l(p,s(p))] }

NP1 €D - - T
gpes) T E Ly ynln_l(p,u)][yn )n‘n_l(p,S)] }

L (pes) = EDLy
.n=1 p

Y

n-1

n

}

(prs(P)) = E:(p){y " h

N
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For the given system Zn(p,s) is obtained from
£ (p,s) = H (p)¥ (p,s)H (p) + R_{(p)
n n n n n
where wn(p,s) is obtained from the Ricatti equation

T T
¢n+1(p,5) = Fn(p,S)wn(p,S)Fn(p,S) + Gn(p)Qn(p)Gn(p)

T T
- \
Fn(p,s/Kn(p,S)Zn(p,S)Kn (p,S)Fn(p,S)

with

Kn(p,s) un(p,S)H:(p)Z;I(p,S)
(Zn(p,s(p)) is obtained in a similar manner, replacing s by s(p)).
obtained from

r(p,s) = H (DIV (p,s) + X (p, )X (p,8)1H_(p) + R _(p)

n n n n n n n

where E;(p,s) is obtained from

U, (2.5) = F_(2y9)T_(p,9)F, (p,5)" + T_(5,9)T ()" (p,)

e gy -~ = = e

r (p,s) is
n

(2.3)

(2.4)
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initialized at
Wnkp) 0
m X -
vo(p,S)
1o 0
b
and X (p,s) is obtained from
n
X (p,s) = F (p,s)X + B (p, 2.5
Xn+l Py s) n(p s)Xn(p,s) Bn(p s)un (2.5)

initialized at

mo(p) l
Xo- |
¢ !
m (p) |

We have used the notation

Fn(p,S(p)) 0

Fn(p,q) =

|

Fn(P;S)Yn(P»S)H(D) Fn(p,s)[I—Kn(p,s)Hn(p)]




n
G (p,s) =
n
0 Fn(p,S)Kn(p,S)
Qn(P) 0
Qn(p’s) =
0 Rn(p) _
Hn(p) = (Hn(p) -Hn‘p)]
and
Bn(p,S(p))‘
Bn(p,s) =

Bn(p,S)

The fixed-gain controller is found from
0
s = arg {min max IV(p,s)-

seS peP

. over vtvﬂ‘,l<Wﬂ17“-;~&ﬁ_,w - el At
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Supgose Jhat the syvstom s tine dinvariant, {.e.

X ., 7 (py)x + Bip,s)a + C(plw

nt ) 1 n

v = Hip)x + v

n T 0
with

. (o 5 = Hp), coviey ) = Rip)

) n
Note i Dhe exteraal fnon-feodb ok fnpes s now aeenmed copstaot
voery atiract oy e altorantive, g teast from the Combutal ien L i\lwi»ni;ﬂ , to

finite time deelgn in this case (o stondv state or reget itor desipn. The tolbowing

result s fundamental to one tixed pain tepulotor design met hod.,

Theorem |

Suppese that for each prP and each 58S the svstem (Fep,s),G(p), B(p)) is

coatrollable and observable and the controller s(p) is stabilizing (i... F(p,=ip))

/ S W B S R - s LA ST LT v .




has all its' eigenvalues inside the unit circle). Then the cost function.

IN(p,s) has a finite limit value, given by

I(p,8) =~ log 15524311—— + tr Z-l(p.‘)r(p,l)-k (2.6)
|Z(p,8(p)]|

where Z{p,s), L(p,8(p)) and T(p,s) are the limit values of In(p,o). tn(y,l(p)) and

rn(p,s), respectively.

Proof

It is well known that when the system is controllable by the input noise
and observable, the state estimation error covariance has a non-singular limit
value, It follows that the output estimation error covariance En(p.a) has a

non-singular limit value L(p,s) if H(p) has independent rows, which is the normal

i

i

|

! case. It is also well known that an equation of the type (2.4) (a Lyapunov equation)
has a limit solution for wn(p.s) if F(p.s) has all 1its' eigenvalues inside the unit

‘ circle. But due to the structure of ka,s). its' eigenvalues are the eigenvalues

| of F(p,s(p)) together with the eigenvalues of F(p,s)[1-K(p,s)H(p)]. Since a(p) fe

; stabilizing, F(p,s(p)) has all its' eigenvalues inside the unit circle. Since the

‘ system (F(p,s),G(p),H(p) is controllable and observable, the matrix ¥(p,s)[I-K(p,s)H(p)]
l
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has all its eigenvalues inside the unit circle (see, e.g. [5] p. 144). It follows
that all the eigenvalues of F(p,s) are inside the unit circle and, consequently,
(2.4) has a limit solution for wn. In addition since the system (2.5) is stable,
in(p,s) has a finite limit value. It follows that Fn(p,s) in (2.3) has a finite
limit value, I'(p,s). We have thus shown that Zn(p,s) and Tn(p,s) have limit

valuer Z(p,s) and T(p,s). The assertion readily follows from (2.2).

1t should be noted that the controllability and observability conditions are
structural requirements which are '"generically" independent of the specific values
of the parameter p and s. The condition that s(p) is stabilizing is normally

satisfied in pointwise optimal design. For instance, consider the system

“ = + + +
ol F(p)xn D(p)zn B(p)y G(p)wn
(2.7)
= <+ v
M H(P)Xn n
where Zn is a linear state feedback process, i.e.
2 = =-8X (2.8)

Then it is well known that by an appropriate choice of the gain matrix s, the

eigenvalues of the matrix

F(s,p) = F(p) ~ D(p)s (2.9)

Rt i 4 g AT Gl PN v Ml [P
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can be placed inside the unit circle provided that the pair (F(p), D(p)) is
stabilizable. One such choice of s is obtained by the linear quadratic
criterion

T

ik TLx 4 x Mz o+ oz Nz (2.10)
n n n n n n

<O
min
z n=1
n

where M and N are positive definite matrices and L is a positive semi definite
matrix such that for CTC = L the pair (F(p),C) is observable, This criterion
gives z in the form (2.8) with
T -1
s = s(p) = (D(p) +(p)D(p) + NJ "[D(p)¢(p)F(p)+M]

where :(p) is obtained from the algebraic Ricatti equation

T
5(p) = Kl(p) +L - Kz(p)K3(P)K2(P)

where

K, (p) FL(p)o(p)F(p)

K.(p) = F(p)¢(p)D{p)+M

Kj(p) = D(p)o{(p)D(p)+N
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Example 1

Consider the system (2.7) with

F(P) = 3 D(P) = ’ G(P) =TI,

Py Py

and state feedback

Zn = - [sl 52]y
so that
~ =
0 1
F(p,s) =
P15 P27%2

It can be seen that the system (F(p,s),G(p),H(p)) is controllable and observable
and the pair (F(p), D(p)) is stabilizable, independently of the values of P sPysSy a8,
The conditions of theorem 1 are thus satisfied and the cost function J(p,s) has a

finite limit value for all p and s. On the other hand, taking F(p,s) as above but

H(pp) = [1

0]
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with

E

Gip) 'l ,  H(p) = [0 1]
0

|1
D(p) = ;
|,O

it can be seen that the system (F(p,s),G(p),H(p)) is controllable and observable
evervwhere but on the line P, = 8§, and the pair (F(p,s),D(p)) is controllable
(hence, stabilizable) evervwhere but at Py = 0. Since these points in the P--S

hyperplane produce indefinite values for the cost function J(p,s), they may simply

be avoided in the search procedure.

Tt should he emphasized that while the conditions of theorem 1 ensure that the
fixed gain design criterion is well defined, they do not guarantee that the resulting
fixed gain controller will be stabiliziné at all points in the given parameter set P,
In tact, overall stability may not be achievable by a fixed gain controller for given
parameter sets, To ensure stability the parameter set must be restricted in such a
way that the eigenvalues of F(p,s) are mapped into the unit circle for all values of

p and s. This problem has been recently considered in [6].

C. Filter Design.

Once a fixed gain controller has been selected, the system is given by (2.1)

b
with s=s". To each parameter p there corresponds a linear stochastic model and
an optimal estimator (Kalman filter) based on this model. It is now desired to

find an estimator, independent of p(i.e., non-adaptive), that will be optimal in
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some sense for the entire parameter set P. Restricting the search to the
set of Kalman filters defined on P, the minmax information criterion defined in
Section A implies that the desired estimator is the Kalman filter corresponding
to a parameter point teP, which is found from

f )

win max E log
teP pep P ft(Y)

where ip(Y), ft(Y) and Ep are the probability densities and the expectation
associated with the corresponding parameters. (note that if t is identified

as the filter design parameter, then, using the notation of section A, we have

(
P P o Pt et e r and F P 2 EP -k,
P p p t t P ) )

For an observation sequence YN = (yl,...,yN) let us denote

£ (v
E log L

P ftw“)

2z

IN(p,t) =

then the filter design criterion in finite time may be written as

min max IN(p,t)
teP peP

The calculation of IN(p,t) is similar to that of IN(p,s) in the controller design

problem, replacing in the corresponding equations F(p,s(p)), F(p,s), K(p,8),B(p,s(p))

- 7
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and B(p,s(p)) by F(t,so), F(p,so), K(p,so), B(t,so) and B(p,so) respectively,

where s~ is the selected controller gain vector, and replacing H(p) by [H(t) - H(m].

' As in the case of controller design, steady-state estimator design offers a

computational advantage over finite time design. We have the following result.

Theorem 2

Suppose that for each peP the system (F(p,so),G(p), H(p)) is stable, controllable

and cbhservable. Then the cost function I (p,t) has a finite limit value
N

N Proof: Substituting the corresponding matrices, the proof is identical to that of

i Theorem 1.

; It should be noted that an intermediate result of the proof is that under the

vondition of the theorem the state estimation error

. T
b (t,p) = Et{[xn-xn\n_l(p)][xn 1}

-X
n‘n~1

has a finite limit value for any t and p. This means that although the non-adaptive

filter is not optimal in the least-squares sense at any point but t, its' mean-square

error has a finite limit value. The fixed-gain steadv state estimator is obtained




b orbam s

. —
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from

min max I(p,t)
teP peP

where 1(p,t) is the limit value of I (p,t).
n

e+ 9.9

Gt

- PR
Sy aedraa bt
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3. Fixed Gain Controller and Filter Design for Aircraft

The proposed design procedure has been applied to the problem of finding
fixed gain values for the longitudinal control system of a given fighter aircraft
(the YF-16 CCV data has been used in the design). The linearized short period

equations are given by (e.g. [7]).

KN ~an(p) a,® a7 [a] [4,0] [0
; =11 azz(p) azz(p) a |+ dz(p) Se + 0 £
_ v Lo 0 a3,(p) v RY | Lg3(1>)_

where q is the pitch rate, a is the angle of attack, w is a wind gust disturbance,

§ 1is the elewator angle (no actuator dynamics are introduced here, for simplicity)
e

and £ is a zero mean unity covariance white noise component of the wind disturbance.

The coefficients aii(p), di(P) and g3(p) are functions of the flight condition
parameters, p = (h,M), where h is the altitude and M is the Mach number. Pitch

rate and normal acceleration measurements are used for feedback purposes. The

measurement equation is

y = = o + \Se v
| 2, o a,, (P 0 Jlv dz(")UoJ

c—d
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where 3nz is the normal acceleration, UO is the forward velocity and v is a zero mean
white noise process. Typical sensor accuracy and wind disturbance data can be found
in the literature (e.g. [8]). The open loop dynamical system was found to be

unstable for most of the given flight conditions.

For digital control purposes the equations have been disretized at 0.02 seconds

sampling intervals, The resulting system has the form

X4 = F(p)xn + D(p)éen + G(p)&n

= H +
v (p)xn o

As a first step in the design procedure an optimal controller is designed for
each of the flight conditions. While any desired criterion could be used at this

stage, we have chosen for illustration purposes the linear quadratic criterion [8]}

2 a :2
X, qn nzn e
. > n
min ﬁQO [ 5 + = + o1
z a Se
n qTnax nz max
max

It has been found that for all given p values the pair (F(p),D(p) is stabilizable

and the pair (F(p),C) is observable where

] ', B
100g 0 0
2
U”a, (p)
C = 0 2 2% 0
36g
[ o 0 0 |
|
{
. g /A o aageng 2z ‘




Flight Dvyn.
Cond. alt. Mach Press.2 s, sq S
No. (ft) No. (Ab/ft ) -
1 S.L 0.6 363.55 -1.377 ~2.048 =1.5242
2 15,000 0.6 205.07 -1.121 -1.1)M -0.,0417%
3 30,000 0.6 107 .85 -0.9603 -0.608 -0.0177
4 S.L 0.8 646,32 -1.3916 -3.395 -0.,0077
5 15,000 0.8 364.57 -1.197 -1.943 -0.0072
h 30,000 0.8 191.73 -1.079 -1.115 -().0027
7 S.L. 0.9 818.00 -1.3175 -4.307 -0.0030
8 15,000 0.9 461.41 -1.1903 -2.575 0.0051
9 30,000 0.9 242,66 ~-1.1057 -1.525 0.0028
10 S.L. 0.95 911.41 -1,z -5.127 0.0261
11 15,000 0.95 514,10 ~-1.1086 -2.935 0.0456
12 30,000 0.95 270,37 =1.0575 -1.687 0.0225
13 S.L. 1.2 1,454 -1.6637 -h.782 0.1931
14 15,000 1.2 820.28 ~1.4532 ~4.044 0.2061
15 30,000 1.2 431.39 -1.3345 -2.344 ¢.1092
16 30,000 1.7 865.77 -1.,780M -2.6098 0.1281
17 50,000 1.7 335.37 -1.6837 -1.1383 0.0554
Table 1. Optimal (Linear Quadratic) Fecdir «x Gains for Given Flight Conditions.
- - /‘ ra

— o«
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s0 that the resulting controller (regulator)

z = -s
0 (p)xn
is stabilizing. In addition, the svstem (F(p,s), G(p), H(p)) is controliable and
observable for any s and p so that the conditions of Theorems ! and 2 are satisfied

and the fixed-gain design criteria are well defined.

In searching for a fixed~gain controller we have restricted ourselves (o the
finite set of optimal gain values s(p) for the 17 given flight conditicons. These

are given in Table 1. The fixed gain controller design criterion now beconmes

min max {I1(j,i) ; i,j = 1,...,17}
i j

The resulting fixed gain controller gains are

s = =1,4532
q

s = =4,0437
2

s = 0,2061
w
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(these are the optimal controller gains corresponding to flight condition 14).

It remains to find a flight condition-independent state estimator. Substituting
the fixed controller gains into the dynamical models for each of the flight
conditions, we get 17 "closed-loop" models. Emploving the filter design
criterion presented in section 2.2, and restricting the search to the set of 17
optimal Kalman filters, the filter corresponding to flight condition 3 is found

to be the overall (non-adaptive) optimal filter. The resulting control svstem {is

given schematicallv in figure 3.1

kel

command ‘e | q, a
—_— S Afrcraft

+’ —|dvnamics ]

nz

!

} |AA~ li
Controller;, q,d,w Kalman

(14) j——" filter (3)!"

Figure 3.1 Resulting Fixed-Gain Contro! Svstem
for Aircraft

Although we did not specifically introduce performance requirements into
the design procedure, it is interesting to examine the performance of the
resulting control system at different flight conditions. Looselyv speaking, it
might be expected that with a fixed_gain controller the aircraft responses would be
faster at high dynamic pressures than at low pressures. (The dynamic pressure is
Py = % (4] Uo where o is the atmospheric air density and FO is the forward velocity.)
For high performance militaryv aircraft it is necessarv that even at low dyvnamic

pressures the control system maintains sufficient maneouvring power (l1.e. fast

response) which is acceptable to the pilot,

LA AT e L e
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The aircraft response in the pitch rate and in the normal! acceleration
to a 4° disturbance ("initial condition") in the angle of attack is shown in
Figure 3.2. A linearized aircraft model has been used in the simulation,
The flight conditions considered, ordered bv increasing dvnamic pressurc are
3, 1, 5 and 11. It is seen that, as expected,the response sneed gencrallv
increases with the dynamic pressure (Note, however that this dependence is not
simple. For instance, the response is significantly faster at flight condition 5
than at flight condition 1, although the corresponding dvnamic pressures are

nearly the same,) Note that an acceptable settling time of 2«1 sec. s obtained

for the lower dvnamic pressure range (e.g. flight conditions 1 and ) while for the

higher pressure range it is much shorter (1 sec).

had // ey e SRR W e O A R iy e




- -23-
- 0.1} \\\\\ -0.02} ~—
—1.9 / -0.44}
-3.8 J/J ) S A N | | I | -0.85 L1 { 1 [ t
10O 2C 30 4.0 ’ 10 20 30 40
r — i -
~0.37¢f -0.€2}-
r -
-1 - 1.6
L\ -
- ] ! 1 ) { i J -27 . [ ! L ! i i i
%10 20 30 a0 270 10 20 30 40
— /\——— [
~0.78}- / -0.47|-
/
/ -
-2.7 / -1.7H
- S U S N S Y S - VRN S S ES SR S
4'60 . 20 30 40 2'80 10 20 30 40
" "
—1.2{" —-0.89} /
-3.71 -2.7}
S-35-3 U VA5 U R NN W SO W W S Y. . AN RN S S I T S T
0 10 20 30 40 0 0 20 30 4090
Figure 3.2, Pitch rate (left) and normal acceleration (right) resvonses of resulting

fixed-gain control system at flight conditions 3 (top), 1, 5, 11 (bottom).
The dynamic pressure is lowest at (.c.3 and highest at f.c, 11,
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Next, the fixed gain design is evaluated using a pilots' Qplnion ~hart
proposed in [7]. The damping ratio and the natural frequency of the closed-
loop system at each of the flight . ~nditions have been calculated and placed on
the chart as shown in Figure 3. It is seen that the svstem's performance at most
of the flight conditions is rated as satisfactory or acceptable. (The tendency
towards the fast response range and away from the slow response range is also
desirable for high performance fighter aircraft). This is particularlv remarkable
in view of the large variability of the flight conditions and the corresponding
aircraft dynamics, and in view of the fact that performance or handling qualities

have not been specifically considered in the design.

60} E %
X
50 A - Satisfactory
B - Acceptable
4'0}' ( - Poor
F: D - Verv slow response, large
30 control motion to manoeuvre,
. difficult to trim
£ - Initial response fast,
2or oversensitive, light stick
forces
1or F - Sluggish, larze stich motions
and forces
0 L NS G -~ slow initiallv, then
0. 03 10 20 3040 oscillatory, tendency to
Nam: ing Ratioe ‘ overcontrol

Figure 3.3 Performance evaluation of proposed
fixed-gain design at given flieht
conditions bv pilot rating contours.
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S Concluding Remarks

A method for designing fixed-gain controllers and filters for stochastic
systems with large parameter variation has been presented with particular attention
to the control problem of high performance aircraft. The resulting design has
shown good performance qualities, although performance specifications have not
been introduced directly into the design. This may be done by first designing each
of the pointwise optimal controllers (at each of the flight conditions) so as to
meet the specifications, and then imposing the specifications as constraints on the
minmax search procedure. In this paper we have found a fixed-gain control svstem
for the entire flight regime. However, since the fixed-gain controller would
normally be used as a back-up system in emergency situations, a small subset of the
flight conditions corresponding to those situations mav be considered in the design,

s0 as to meet tighter performance requirements.
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